domingo, 28 de agosto de 2011

Historia del cálculo

 Las principales ideas que apuntalan el cálculo se desarrollaron durante un periodo de tiempo muy largo sin duda. Los primeros pasos fueron dados por los matemáticos griegos.
El Cálculo Infinitesimal es la rama de las matemáticas que comprende el estudio y aplicaciones del Cálculo Diferencial e Integral.
El Cálculo es la matemática del cambio: velocidades y aceleraciones. Cálculo es también la matemática de rectas tangentes, pendientes, áreas, volúmenes, longitudes de arco, centroides, curvaturas y otros diversos conceptos que han hecho que los científicos, ingenieros y economistas puedan modelar situaciones de la vida real.
 El cálculo se interesa en el cambio y en el movimiento; trata de cantidades que se aproximan a otras cantidades.

 Esta idea básica de límite separa al cálculo de las otras áreas de las matemáticas. De hecho, podríamos definir al Cálculo como la parte de las matemáticas que trata con límites.
Los orígenes del cálculo se remontan unos 2500 años por lo menos, hasta los antiguos griegos, quienes hallaron áreas aplicando el “método de agotamiento”. Sabían cómo hallar el área de cualquier polígono al dividirlo en triángulos (método de triangulación), y sumar las áreas de estos triángulos A.
 Un problema mucho más difícil hallar el área de una figura curva. El método griego de agotamiento consistía en inscribir polígonos en la figura y circunscribir otros polígonos en torno a la misma figura y, a continuación, hacer que el número de lados de los polígonos aumentara. Fue Arquímides (287-212 a.n.e.) quien dio la descripción más clara de este método. Entre otras 'integraciones' de Arquímedes estaban el volumen y la superficie de una esfera, el volumen y área de un cono, el área de una elipse, el volumen de cualquier segmento de un paraboloide de revolución y un segmente de un hiperboloide de revolución.

Sea n A el área del polígono inscrito con n lados. Al aumentar n , se ve que n A se aproxima cada vez más al área del círculo. Decimos, entonces, que el área del círculo es el límite de las áreas de los polígonos inscritos.


 Zenón de Elea, alrededor de 450 a. C., planteó una serie de problemas que estaban basados en el infinito. Por ejemplo, argumentó que el movimiento es imposible:
Si un cuerpo se mueve de A a B entonces, antes de llegar a B pasa por el punto medio, B1, de AB. Ahora bien, para llegar a B1 debe primero pasar por el punto medio B2 de AB1. Continuando con este argumento se puede ver que A debe moverse a través de un número infinito de distancias y por lo tanto no puede moverse.
Leucipo, Demócrito y Antifon hicieron contribuciones al método exhaustivo griego al que Eudoxo dio una base científica alrededor de 370 a. C. El método se llama exhaustivo ya que considera las áreas medidas como expandiéndolas de tal manera que cubran más y más del área requerida.

 Por razonamiento indirecto, Eudoxo (siglo v a. n. e.) utilizó el agotamiento para probar la conocida fórmula del área de un círculo: . No hubo más progresos hasta el siglo XVI cuando la mecánica empezó a llevar a los matemáticos a examinar problemas como el de los centros de gravedad.
 Luca Valerio (1552-1618) publicó De quadratura parabolae en Roma (1606) que continuaba los métodos griegos para atacar este tipo de problemas de calcular áreas. Su método consistía en pensar en las áreas como sumas de líneas, otra forma rudimentaria de integración.
Descartes produjo un importante método para deteminar normales en La Géometrie en 1637 basado en la doble intersección. De Beaune extendió sus métodos y los aplicó a las tangentes; en este caso la doble intersección se traduce en raíces dobles.  
Roberval consideró problemas del mismo tipo pero fue mucho más riguroso que Cavalieri. Roberval se fijó en el área entre una curva y una línea como formada por un número infinito de rectángulos infinitamente delgados. Aplicó esto a la integral de xm entre 0 y 1 y demostró que tenía un valor aproximado de
(0m + 1m + 2m +...+ (n-1) m)/nm+1.
Roberval entonces afirmó que esto tendía a 1/(m+1) cuando n tiende a infinito, calculando así el área.
El filósofo y matemático alemán Gottfried Wilhelm Leibniz (1646- 1716), realizó investigaciones similares e ideando símbolos matemáticos que se aplican hasta nuestros días. Leibniz aprendió mucho en un viaje por Europa en el que conoció a Huygens en París en 1672. También conoció a Hooke y a Boyle en Londres en 1673 donde compró varios libros de matemáticas, incluyendo las obras de Barrow. Leibniz sostendría una larga correspondencia con Barrow. Al volver a París, Leibniz realizó un trabajo buenísimo sobre el cálculo, pensando en los fundamentos de manera muy distinta a Newton.  La concepción de Leibniz se logra al estudiar el problema de las tangentes y su inverso, basándose en el Triángulo Característico de Barrow.
Que dicho triángulo al que se forma con la tangente, la subtangente y la ordenada del punto de tangencia, así mismo, es igual al triángulo formado por la Normal, la Subnormal y la ordenada del mismo punto. Los símbolos , la palabra “derivada” y el nombre de “ecuaciones diferenciales” se deben a Leibniz. dx dy dx,
Pierre Fermat (1601-1665), matemático francés, quien en su obra habla de los métodos diseñados para determinar los máximos y mínimos, acercándose casi al descubrimiento del Cálculo Diferencial, mucho antes que Newton y Leibniz. Dicha obra influenció en Leibniz en la invención del Cálculo Diferencial. Fermat dejó casi todos sus teoremas sin demostrar, Parábola: y/a = (x/b)² generalizada como (x/a)n = (y/b) m.
Hipérbola: y/a = (b/x)² generalizada como (y/a)n = (b/x) m.
Al estar examinando y/a = (x/b) p, Fermat calculó la suma de rp para r entre 1 y n. Fermat también investigó máximos y mínimos considerando dónde la tangente a la curva es
Paralela al eje X


Hudde descubrió un método más sencillo, llamado la Regla de Hudde, que básicamente involucra a la derivada.
 Huygens criticó las pruebas de Cavalieri diciendo que lo que se necesita es una demostración que al menos convenza de que puede construirse una prueba rigurosa.
Nicolás Oresme, obispo de la comunidad de Lisieux, Francia, estableció que: en la proximidad del punto de una curva en que la ordenada se considera máxima o mínima, dicha ordenada varía más pausadamente.
Pero Kepler tenía poco tiempo para el rigor griego y más bien tuvo suerte de obtener la respuesta correcta ya que cometió dos errores que se cancelaron uno al otro en su trabajo. Johannes Kepler, coincide con lo establecido por Oresme, conceptos que permitieron a Fermat en su estudio de máximos y mínimos, las tangentes y las cuadraturas, igualar a cero la derivada de la función, debido a que la tangente a la curva en los puntos en que la función tiene su máximo o mínimo, es decir, la función es paralela al eje donde la pendiente de la tangente es nula. X
 Tanto Torricelli como Barrow estudiaron el problema del movimiento con velocidad variable. La derivada de la distancia es la velocidad y la operación inversa nos lleva de la velocidad a la distancia. De aquí empezó a evolucionar naturalmente una concienciación de la inversa de la diferenciación y que Barrow estuviera familiarizado con la idea de que integral y derivada son inversas una de otra
 Isaac Barrow (Londres, 1630 - id., 4 de mayo, 1677), maestro de Newton, construyó el “triángulo característico”, en donde la hipotenusa es un arco infinitesimal de curva y sus catetos son incrementos infinitesimales en que difieren las abscisas y las ordenadas de los extremos del arco.



El Cálculo Diferencial se origina en el siglo XVII al realizar estudios sobre el movimiento, En 1666 Sir Isaac Newton (1642-1727), fue el primero en desarrollar métodos matemáticos para resolver problemas de esta índole. Inventó su propia versión del cálculo para explicar el movimiento de los planetas alrededor del Sol. Newton concibió el llamado Método de las Fluxiones, considerando a la curva como la trayectoria de un punto que fluye; denomina “momentum” de la cantidad de fluente al arco mucho muy corto, recorrido en un tiempo excesivamente pequeño, llamando la “razón del momentum” al tiempo correspondiente es decir, la velocidad. El principio establece que: “los momentos de las funciones son entre sí como sus derivadas”. La obra de Newton sobre Análisis con series infinitas fue escrita en 1669 y circuló como manuscrito. No fue publicada sino hasta 1711.
Después de Newton y Leibniz, el desarrollo del cálculo fue continuado por Jacobo Bernoulli y Johann Bernoulli. Sin embargo, cuando Berkele Jacobo Bernoulli introduce la palabra “función” en el Cálculo Diferencial.
y publicó su Analyst en 1734 atacando la falta de rigor en el cálculo y disputando la lógica sobre la que se basaba, entonces se hicieron grandes esfuerzos para amarrar el razonamiento.
Para 1675, Leibniz se había quedado con la notación
∫y dy = y²/2
       Escrita exactamente como se hace hoy. Sus resultados sobre cálculo integral fueron publicados en 1864 y 1686 con el nombre de calculus summatorius; el término 'cálculo integral' fue sugerido por Jacobo Bernoulli en 1690.

Maclaurin intentó poner el cálculo sobre una base geométrica rigurosa pero sus fundamentos realmente satisfactorios tendrían que esperar al trabajo de Cauchy en el siglo XIX.

Joseph-Louis Lagrange (1736-1813), quien demostró por primera vez el Teorema del Valor Medio. Se dice que Napoleón dijo de él un día: “Lagrange es la altiva pirámide de las ciencias matemáticas”.
Augustin-Louis Cauchy (París, 21 de agosto de 1789- Sceaux, 23 de mayo de 1857), matemático francés, impulsor del Cálculo Diferencial e Integral, autor de La Teoría de las Funciones de las Variables Complejas, se basó en el método de los límites; las definiciones de “función de función” y la de “función compuesta” se deben a él. El concepto de función continua fue introducido por primera vez por él en 1821.
 En la definición dada en su texto Cours d’Analyse se expresa que los pequeños cambios indefinidos en eran el resultado de los pequeños cambios indefinidos en . “… se dirá que es una función continua y x = xf
si… los valores numéricos de la diferencia decrecen indefinidamente con los de …”. A principios del siglo XIX dio una definición satisfactoria de límite, y en consecuencia, de derivada de una función  xf x f
Leonhard Euler (1707-1783). La simbología se debe a él, quien además de hacer importantes contribuciones a casi todas las ramas de las matemáticas, fue uno de los primeros en aplicar el cálculo a problemas de la vida real en la Física. Sus extensos escritos publicados incluyen temas como construcción de barcos, acústica, óptica, astronomía, mecánica y magnetismo.  xf
John Wallis (Ashford, 23 de noviembre de 1616 – Oxford, 28 de octubre de 1703), enuncia el concepto de “límite”.
La representación simbólica “lím” se debe a Simón Lhuilier (n. Ginebra, Suiza el 24 de abril de 1750, f. en Ginebra el 28 de marzo de 1840).
El símbolo “tiende a” lo propuso J. G. Leathem
Karl Weierstrass, matemático alemán, se encargó de dar formalidad y estructura a la noción intuitiva de límite.
Peter Gustav Dirichlet (1805-1859) fue quien dio la primera definición moderna de función. Al principio del desarrollo del cálculo, la definición de función era mucho más restringida que en la actualidad, y no se habían considerado funciones como la de Dirichlet.

Niels Henrik Abel (1802.1829) y Evariste Galois (1811-1832). Aunque sus vidas fueron breves, sus trabajos en los campos del análisis y del álgebra abstracta fueron de gran alcance.
En el siglo XIX se encontraron bases más firmes y lógicas al margen de lo infinitamente pequeño.
El extraordinario avance registrado por la matemática, la física y la técnica durante los siglos XVIII, XIX y XX, se lo debemos al Cálculo infinitesimal y por eso se puede considerar como una de las joyas de la creación intelectual de la que el hombre puede sentirse orgulloso.

El Cálculo Diferencial se ha ido desarrollando a través de los años, consolidándose como una herramienta técnico – científica que se utiliza en el análisis de procesos que contienen magnitudes en constante cambio, Los procesos generales y las reglas prácticas sencillas del Cálculo Diferencial se deben a Newton y Leibniz; sin embargo, por más de 150 años el Cálculo Diferencial continuó basándose en el concepto de lo infinitesimal. A Newton y Leibniz se les llama fundadores del Cálculo, ya que fueron los primeros en estudiar el problema geométrico fundamental del Cálculo Diferencial denominado “Problema de las Tangentes”, en el cual hay que hallar  las rectas tangentes a una curva dada en un punto cualquiera. Sin embargo, fue Leibniz quien trató de ampliar el cálculo al desarrollar reglas y asignarle una notación formal.
En resumen
Este es un resumen de algunos de los momentos y logros históricos más importantes de esta rama importantísima de las matemáticas y pretende motivarte para que realices una indagación e investigación más profunda sobre las ideas y los hechos aquí presentados. 





DAOS CURIOSOS
Los hechos de las disputas Newtonniz eron, básicamente, los siguientes:
v  Newton describe en un manuscrito de 1669 su método de las fluxiones; este manuscrito circuló entre los miembros de un selecto grupo de matemáticos británicos, pero no se publicó.
v  Mediada la década 1670-1680, Leibniz descubrió prácticamente los mismos métodos de Newton, y en 1676, durante una misión diplomática a Londres, vio una copia del manuscrito de Newton. Y poco tiempo después, recibió dos cartas de Newton en las que éste le desvelaba algunas ideas sobre las fluxiones. (Un análisis minucioso de los trabajos de Leibniz, no obstante, permite deducir que su descubrimiento fue independiente de sus contactos con Newton.)
v  En 1684, Leibniz publicó su primer trabajo sobre Cálculo Diferencial, pero en ninguna parte del mismo mencionaba a Newton; ni tan siquiera decía que había visto un manuscrito de éste.
v  Así las cosas, muchos matemáticos ingleses acusaron abiertamente a Leibniz de plagio, hasta tal punto que aparecieron tales acusaciones incluso en la revista de la Royal Society, en un artículo en el que se decía que lo único nuevo del trabajo de Leibniz consistía en utilizar una notación diferente.
v  Leibniz se quejó a la Royal Society por haber autorizado que desde las páginas de su revista se le acusara de plagio. La royal Society respondió organizando una comisión que investigara los derechos de prioridad. Su informe final, publicado en 1713, daba toda la razón a Newton, sugiriendo claramente que Leibniz no había tenido idea del cálculo hasta 1677, o sea, mucho después de haber recibido las cartas de Newton y haber visto sus manuscritos. Tan duro veredicto, sin embargo, perdía toda su fuerza cuando se vio que el presidente de la Royal Society era precisamente Newton. Pero, el toma y daca continuó y pronto apareció en el continente un panfleto acusador contra Newton. El panfleto era anónimo, pero se supo más tarde que había sido escrito precisamente por Leibniz.
v  Evidentemente, los dos habían cometido errores: Newton, por no publicar debidamente sus descubrimientos, y Leibniz, por no haber reconocido desde el principio su contacto con los documentos de Newton y no haber compartido así la autoría del descubrimiento, que él sabía que debía ser compartido. En todo caso, este asunto acabó siendo una vergüenza para Newton, Leibniz y todo el mundo académico.
v  Actualmente, toda la comunidad científica otorga a ambos el honor de haber descubierto el cálculo. Sin embargo, en la actualidad se siguen las notaciones que usaba Leibniz para simbolizar diferenciales e integrales.